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Item response theory (IRT) is a family of statistical pro-
cedures for analyzing and describing test performance.
It has three major characteristics that distinguish it from
classical test theory: (a) It focuses on performance on in-
dividual items, rather than only on intact tests; (b) it de-
scribes item performance at each level of student ability;
and (c) it is model based. Researchers utilize IRT to ana-
lyze students’ item performance data from one testing
situation, describe it succinctly, and make predictions
about item and test performance in other situations. The
use of IRT takes advantage of generalizable information
in a flexible manner to increase the efficiency and use-
fulness of the measurement process.

During the past 20 years, the use of IRT in education
has increased tremendously. Almost every major pub-
lisher of educational tests uses IRT in some way, as do a
substantial number of local educational agencies. Re-
search on the properties and characteristics of IRT also
has increased dramatically. Much of this research has fo-
cused on detailing the circumstances under which the
theoretical advantages of IRT are fulfilled in practice.

Conceptual Foundation

The idea of generalizing or predicting from one test-
ing occasion to others is one of long standing in educa-
tional measurement. For example, the proportion of stu-
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dents passing an item (p-value or p) is a traditional
description of item difficulty. Using p-values obtained
from one group of students allows items to be rank or-
dered from easiest to most difficult and the prediction
made that they will have the same rank ordering for
other groups of students. Although p-values are very
useful for predicting rank orders of item difficulties, they
do not include a way of predicting how much the nu-
merical values of the p-values will change when more or
less able groups of students are tested.

Going beyond traditional procedures, IRT describes
item difficulty in a manner that is stable over groups of
students and states how this stable function interacts
with the ability level of the group. This process permits
detailed predictions of how much p-values will change
when different students are tested. Going further than
just describing difficulty, IRT can describe other statis-
tical properties as well, permitting detailed predictions
of many items and test characteristics.

In order for IRT to produce these descriptions and
predictions efliciently, a statistical model is required. A
model makes simplifying assumptions about the impor-
tant factors influencing item performance. The core of
each IRT model is a formula that defines the probability
of a student’s correct response to an item as a function of
the ability of the student and properties of the item. This
function is called the item characteristic function, and a
graph of it is called the item characteristic curve (ICC).
A simplified example is useful for describing its concep-
tual basis.

Imagine that a 20-item test is given to a group of stu-
dents. The proportion of students with each number-
correct score that passes Item 1 could be obtained and
plotted as in Figure 1(a); performance on Item 2 also
appears there. This information is conditional, which
means that it presents the chance of passing each item
conditional on—or given that—a student has attained
each total test score. From Figure 1(a), a student’s total
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test score can be used to predict his or her item perfor-
mance. For example, a student with a test score of 10
would be predicted to have a 95% chance of passing Item
1 and a 50% chance of passing Item 2.

Although Figure 1(a) provides a great deal of infor-
mation, it has disadvantages. Maintaining all the possi-
ble data points for each item in order to describe that
item would be cumbersome, and the minor irregularities
in the curves are likely to be unimportant. Also, in Fig-
ure 1(a), item performance is described conditional on a
number-correct score that includes that item; an item’s
conditioning function will change, depending on the
number and characteristics of the other items in the test.
Finally, in order to obtain the number-correct score
needed to predict item performance, the student has to
take that item; the prediction would provide no increase
in information or efficiency.

Avoiding these disadvantages, the IRT mathematical
function, or model, defines a smooth S-shaped line, as in
Figure 1(b). In place of the number-correct score, IRT
models use a trait scale, also called the © (theta) scale,
as the ability measure. This trait scale is designed to be
stable when different items are in the test. The IRT
model also has a small number of item parameters that
take on different values for different items. The result is
that the entire ICC of each item can be described with
just a few numbers. ,

Having 1CCs that are stable over groups of students
is sometimes described as person-free item measurement.
Being able to produce equated test scores from a variety
of sets of items is sometimes called item-free person meas-
urement. These catchy terms are exaggerations relative to
what is found with real-life tests, but they are useful for
conveying the ideals that motivate IRT. As described
more fully in the Model Fit section, to the extent that IRT's
simplifying assumptions are true, a model will be useful
and make accurate predictions; to the extent that they
are not true, use of a model can lead to inaccuracies.

FIGURE 1. Item characteristic curves conditional on number-correct scores and IRT ability scores
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Survey of Educational Applications

When IRT is used appropriately, it can increase the
efficiency, accuracy, or usefulness of a wide variety of
measurement processes. Many of the following advan-
tages can be obtained by one or another of the classical
procedures, but the IRT models provide a unified frame-
work and system that facilitates their accomplishments.
More detailed information about some of these applica-
tions is presented in later sections.

Test Construction. An IRT model can be used to
create a pool of items that have known statistical char-
acteristics, including descriptions of how well each item
is measuring students at each ability level. Measures of
differential item functioning can be provided for use in
evaluations of item bias. The psychometric properties of
any test created from the pool can be readily predicted
for different groups of students, even when those stu-
dents have not taken that test. These properties include
number-correct score means, standard deviations, and
distributions, as well as reliabilities, standard errors of
measurement, and item p-values. Thus the IRT models
are ideal for computer-assisted item selection systems,
which give the test constructor suggestions for items that
meet various needs and instant feedback on the effects
of alternative item selections.

Test Equating and Administration.  Traditional
equating procedures produce conversion tables that
show how to translate a score on one test to a comparable
score on another test. With traditional procedures, the
intact tests are administered to students to collect the
equating information. However, IRT procedures are
more flexible, because the item, rather than the intact
test, can be the unit of scaling or equating. Once item
scaling has been successfully accomplished, the items
can be selected for a variety of test configurations. The
IRT model states how to aggregate the item information
to get test information and how to produce equated abil-
ity scores for different tests.

This flexibility can be used in computerized adaptive
or tailored testing, in which a student’s response to each
item is considered in choosing the next item to be ad-
ministered. Adaptive testing chooses items to match the
student’s performance level and requires fewer items
than an intact test to reach a desired level of score ac-
curacy.

The use of IRT is well suited to matrix sampling, in
which multiple test forms are created and administered
to different students using a random sampling proce-
dure. Matrix sampling is useful for obtaining group-level
data on a broad sample of items in a specified content
domain, while limiting the testing time required of each
student.

Test Scoring and Interpretation. The user of any
test score should know the amount of measurement er-
ror it is likely to contain. Classical test theory produces
a single standard error of measurement (SEM) that ap-

plies to all scores obtained with a test. However, IRT
goes beyond the classical approach to provide a different
SEM for each score. For example, if a test emphasizes
easy items, scores for low-ability students will be more
accurate than those for high-ability students.

Indices are available that reflect the appropriateness
of a test in measuring a given student. For example, if a
student’s score appears to have been influenced by sub-
stantial guessing or noncompletion of the test, the score
can be flagged. In some cases, adjusted scores can be
provided.

Testers can use IRT in test scoring to increase accu-
racy by taking into account the statistical characteristics
of the particular items that the student answered cor-
rectly. Such scoring methods can be particularly helpful
in increasing score accuracy for low-scoring students
who have taken multiple-choice tests.

From a student’s score on a subset of the items in an
item pool, IRT can yield that student’s probability of
passing any of the other items in the pool. Thus scores
can be referenced extensively to content, enhancing
interpretation and instructional decisions.

Models and Their Parameters

Most IRT models used in practice utilize one charac-
teristic of the student, usually called the trait, and are
called unidimensional models. The numerical value of
the trait reflects the level of the student’s ability,
achievement, skill, or other primary characteristic being
measured by the test. The trait is alternatively called the
latent trait, ability, theta (), or scale score. In this ar-
ticle, the term ability is used.

These models also typically employ one, two, or three
item characteristics, or parameters, that reflect differ-
ences among the items in their statistical attributes. Us-
ing ability, item parameter(s), and a mathematical func-
tion, the model describes P(O), the probability that a
student with ability © will pass item i. The value of i
ranges from 1 to n, the number of items in the test. By
definition, the probability that the student will fail item
iis 1 — P(O). The three most commonly used models
contain the same mathematical function, the cumulative
logistic.

Three-Parameter Model. The three-parameter mod-

el is the most general of those in common use. It states
that

1 - ¢
1 + exp[—Da(® — b))

PO) = ¢, +

@

The term exp|y] means “take the constant e (2.718...) to
the power y.” The term D is a constant that is usually
taken as 1.7. Students differ in terms of their © values,
with higher values indicating a higher chance of cor-
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rectly answering a specific item and all the other items
in the test. As discussed in the Scale Units section, dif-
ferent O scales can be used interchangeably to a certain
extent; the examples described here have O values from
about 100 to 400. Items differ in terms of the numerical
values of their a,, b, and ¢, parameters.

The c; parameter is the probability that a student with
very low ability will answer the item correctly. For mul-
tiple-choice items, where students can choose the cor-
rect answer by guessing, ¢; values are usually close to
the reciprocal of the number of answer choices; for ex-
ample, the ¢, for a four-choice item will usually be in the
neighborhood of .25 The actual value of ¢; will be influ-
enced by how attractive the wrong answer choices are to
very low ability students. Thus, although the ¢, value can
be influenced by nonrandom as well as random factors,
it typically is called the guessing parameter. The c, value
is also called the item lower asymptote because the ICC
does not reach or get lower than ¢, no matter how low
the student’s ability. Figure 2(a) displays the ICCs of two
items that differ only in terms of their ¢, values, with
¢ = .25and ¢, = .15.

The b, parameter is called the item difficulty. The
higher the b, value, the more difficult the item is and the
less likely that a student will answer it correctly. Figure
2(b) displays the ICCs for two items that differ only in
terms of their b, values, with b; = 250 and b, = 300.
Item 1 is the easier item, and a student at any ability
level has a higher probability of getting Item 1 correct
than Item 2. Note that b, and O are in the same units
and that when a student’s ability equals an item’s b,
value, the student’s probability of getting the item cor-
rect is halfway between c; and 1.0. The b, is sometimes
called the item location, because it describes the location
of the ICC on the O scale. The term item location also
is used so that the IRT parameter will not be confused
with the traditional item difficulty, the p-value. As items
become more difficult, b; values get higher while p-val-
ues get lower.

Figure 2(b) shows that the probability of correctly an-
swering each item is changing mokt rapidly when © =
b, The third item parameter, a, is a function of how
steep the ICC is at © = b, and is called the item dis-
crimination. The higher the g, value, the more the item
distinguishes or discriminates among students whose
abilities are about the same as the item’s difficulty. The
items in Figure 2(c) differ only in terms of their item
discriminations, with a, being twice as large as a,.

Figure 2(d) contains 1CCs for items with several dif-
ferent combinations of item parameters. A wide variety

*of ICC shapes can be described with the three-parame-
ter model.

Two-Parameter Model. A special case of the three-
parameter model, the two-parameter model, states that
¢; = 0 for all items. That is, students with very low abil-
ity are not expected to answer any items correctly. This
assumption would be appropriate for completion items

or in cases where students cannot or do not guess the
correct answer. The two parameters of this model are
item discrimination (a;) and difficulty (b), each of which
can vary over items. Figure 2(e) shows ICCs for three
items that are consistent with the two-parameter model.

One-Parameter Model. The most restrictive of the
models in common use, the one-parameter model, is a
special case of the three- or two-parameter model in
which ¢; = 0 for all items, and the item discriminations
are all equal. The constant value used for the item dis-
criminations is arbitrary, but typically g, is taken as 1/D,
with the result that the Da, term no longer appears in the
item characteristic function. In the one-parameter model,
items can vary with respect to one characteristic only:
their difficulty (b). Figure 2(f) shows ICCs for three
items that are consistent with the one-parameter model.

The one-parameter model is commonly called the
Rasch model. Georg Rasch (1960) conducted extensive
research on this model, examining it not as a special case
of the three- or two-parameter model but as the only
model that produced certain desired measurement char-
acteristics.

Local Independence. If an IRT model is true, the
student’s ability and the items” parameters incorporate
all the important information about the student’s perfor-
mance on the items. This model property implies that
performance on different items is independent, that is,
conditional on the student’s ability. This local indepen-
dence means that the probability that a student will an-
swer correctly any two items is the product of the prob-
abilities that the student will answer correctly each
separate item, and the psychometric contribution of an
item to a test can be evaluated without knowledge of the
other items in the test. Local independence does not
occur when a test is speeded or when the stem or answer
to one item gives information that can be used in an-
swering another.

Scale Units. One property that all the IRT models
share is that the scale for the ability and item parameters
can be linearly transformed without changing the
models’ predictions. A linear transformation involves
multiplying by one constant and/or adding another con-
stant. Most (but not all) of the computer programs that
estimate item parameters and abilities define the scale
so that the abilities in that analysis have (approximately)
a mean of 0 and standard deviation of 1. For educational
applications this scale commonly is transformed to avoid
negative numbers—for example, to have a mean of 300
and a standard deviation of 50. Such a linear transfor-
mation does not affect the models™ predictions, so long
as an appropriate change is made to the item parame-
ters. The Da(© — b) term is the only part of the model
influenced by the choice of scale. Imagine that a new
scale is defined using ©* = 50-0 + 300, b* = 50-b, +
300, and a;* = a/50. Then, Da*(©* — b*) = Da (O
b)), and for every student and item the new scale makes
the same predictions as the old scale.
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FIGURE 2. Examples of item characteristic curves
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The fact that the predictions based on these models
are not affected by linear transformations makes them
consistent with traditional criteria for producing equal-
interval scales, in which an increase of one score unit
has the same meaning anywhere on the ability scale. Nu-
merous non-IRT procedures also exist for producing
equal-interval scales. Although these procedures all pro-
duce putative equal units, their results can differ sys-
tematically, and no objective criterion exists for deciding
which scale is the “right” one. Scaling units can be im-
portant in education when they are used to draw conclu-
sions about academic growth. In examining growth, re-
gardless of whether an IRT or non-IRT scale is involved,
the prudent tester uses analysis techniques whose con-
clusions are not affected by the choice of scale. This cau-
tion is particularly important when the amounts of
growth for students at very different achievement or
ability levels are to be compared (Braun, 1988; Yen,
1986).

Choosing a Model

Opinions vary about how to choose which, if any, of
the IRT models to use, and these opinions can be de-
scribed as falling along a continuum. At one end are
those who “choose the model to fit the data,” and at the
other end are those who “choose the data to fit the
model.”

The choose the model approach finds a model that is
sufficiently general to fit the item data with desired ac-
curacy. The less restrictive a model is, the more likely it
will be found to match real-life student performance.
For example, because the two- and three-parameter
models allow items to vary in terms of item discrimina-
tion and the one-parameter model does not, the two-
and three-parameter models are more accurate when
items in fact vary in terms of their discriminations. In
choosing a model to optimize fit, the tester would be led
to the more elaborate model. In the extreme, one would
theoretically be led to use no model at all but to return
to a complete description of the data at hand, as in Fig-
ure 1(a). Although such an extreme approach would be
optimally accurate, it would also be inefficient, because
it would not take advantage of the consistencies and gen-
eralities that do occur in item data.

“From the choose the data perspective, the measure-
ment properties that are desired are identified and the
model(s) that produce these properties determined.
Then, only those items that are consistent with the ideal
model are used. To the extent that a model’s require-
ments are unnecessarily restrictive, selection of fitting
items can have an unnecessary negative impact on the
content or construct validity of the test. In the extreme,
this approach leads to abandoning measurement, be-
cause in real life items conforming to the ideal cannot be
produced.
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Proponents and detractors of various IRT models can
be described as falling somewhere on this continuum.
Heated disagreements have arisen about how model fit
should be evaluated and whether the fit statistics used
have sufficient statistical power to detect important
instances of mishit. In general, model fit is not an all-
or-none condition, and a model’s predictions can be
judged to be sufficiently accurate for one application but
not another. These issues are discussed further in the
Model Fit section.

Selected Educational Applications

Predicting Group-Dependent Test Performance.
Determining how an item or a test works for any group
of students begins with consideration of the abilities of
the students in that group. Let O, be the ability of stu-
dent k, and k ranges from 1 to N, the number~of stu-
dents. For that group, the p-value, or expected propor-
tion passing item i, is

P, (6y). @

An example of the use of this procedure is with a pool
of calibrated items; O; is estimated by having students
take a subset of the items in the pool. Equation 2 is used
to estimate how these students would have done on any
of the items in the pool they did not take. These predic-
tions are combined for sets of items to obtain predictions
of a wide variety of test statistics, such as number-correct
score means, standard deviations, and reliabilities.

Standard Error of Measurement. 1In classical test
theory, the accuracy of scores is expressed in terms of
test reliability, ry,’, and inaccuracy in terms of the stan-
dard error of measurement. In classical theory the SEM
equals S,V [1 — rxx'} where Sy is the standard devia-
tion of observed test scores. The classical SEM is a sin-
gle, group-dependent statistic that communicates an av-
erage amount of score inaccuracy.

Going beyond the single SEM for a test, IRT de-
scribes the SEMs that a test has at each ability level and
the independent contribution that each item makes to
those SEMs. At a given ability estimate, SEM(6) = 1/
Vv [I(GX, where I{0) is called the test information. As
test information increases, the SEM decreases. When
optimal procedures are used in scoring a test (as de-
scribed in the Test Scoring section), the test information
is maximized and equals the sum of the item information
functions, 1(0). All else being equal, the more items
there are in a test, the greater is the test information
obtained and the lower is the SEM function.

Figure 3(a) shows the information functions of the
items in Figure 2(d). (The formula for I(0) can be found
in most IRT texts—for example, Lord, 1980.) Items pro-
vide the most information near their locations, and items
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with higher discriminations and lower guessing param-
eters provide more information. The information func-
tion for a test composed of those three items is also
shown in Figure 3(a) and its SEM function in Figure
3(b). The SEM is lowest near scores of 300, because the
items that measure best are located near that score.

Test users sometimes need to choose among several
available test forms or levels. Comparison of SEM func-
tions or information functions, called analysis of relative
efficiency, can give precise information about which test
would be more accurate for a particular group of stu-
dents. :

Item Pools and Test Construction. As described
more fully in the Item Parameter Estimation section,
students’ responses to a set of items are used to estimate
item parameters, or calibrate the items. Frequently, the
test developer wants to construct a pool of items, all of
which are calibrated to the same scale. This pool would
contain more items than would be prudent or feasible to
administer to one student. Multiple test forms are con-
structed and administered to different groups of stu-
dents, and then one of several possible equating proce-
dures is used to align or equate the results from the
different forms and place them on the same scale.

In some cases the groups of students that are given
different forms are carefully selected to be equivalent,
which becomes the basis of equating the results in the
different forms. In another equating technique, a subset
of the items are the same across forms; these common
items are called anchor items. By aligning the parame-
ters of the anchor items, all the items in the different
forms are calibrated to the same scale (Stocking & Lord,
1983).

After the pool has been constructed, items can be
readily selected to create tests for specific applications.
For example, different tests can be created to match the
performance levels of students at different grades. Iden-
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tifying the best items for determining minimum
competency or for selecting students for advanced in-
struction is a straightforward procedure. Extensive psy-
chometric descriptions can be produced to describe the
characteristics of any test selected (Green, Yen, & Bur-
ket, 1989). ,

Test Scoring. When item parameters have been ob-
tained, they can be used to produce equated ability es-
timates for different tests. There are (at least) two types
of performance data that can be used to score a test to
obtain an ability estimate: number-correct scores and
patterns of item responses. Given the performance data,
a well-established statistical procedure called maximum
likelihood is commonly used to estimate the ability for
each student.

For the one-parameter model, the maximum likeli-
hood ability estimate is that which has an expected num-
ber-correct score equal to the student’s observed num-
ber-correct score. That is, if X; is the number-correct
score for student k, that student’s ability estimate is the
O, that makes

X = 3 BG) ®

Equation 3 transforms a number-correct score on a
particular test to an estimated ability. It can be applied
to any test composed of items that have been success-
fully calibrated to the same ability scale. For every test,
a student’s estimated ability, 0,, is expected to be the
same, or equated, except for random variation due to
measurement error; the amount of measurement error
expected is described by the SEM function. By trans-
forming number-correct scores on different tests to
equated ability estimates, Equation 3 also determines
the number-correct score on one test that is equivalent
to any given number-correct score on another.

Item information, test information, and test SEM functions based ont he items in

200 250 300 4

(b)
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For every IRT model, Equation 3 can be used to get
a maximum likelihood ability estimate. If the two- or
three-parameter model is used, it is possible to go fur-
ther to increase the accuracy of the ability estimate by
considering which particular items the student answered
correctly (that is, considering the item response pattern).
Compared to number-correct scoring, pattern scoring
raises some students’ ability estimates and lowers oth-
ers’, producing no change in the average ability estimate
for groups of students. Pattern scoring is optimal, be-
cause it takes into account all the information available
in the item responses and has lower SEM values than
number-correct scoring,

Score Interpretation. By placing item difficulties on
the same scale as a student’s ability, IRT can be used to
create informative score reports. The student’s ability
can be estimated with a subset of the items in a pool.
This ability estimate can then be used to predict the
probability that the student would have passed items in
the pool that were not taken. Such information is useful
in relating a student’s score to concrete performance de-
scriptions. Examples of such score interpretations are
provided by Connolly, Nachtman, and Pritchett (1976)
and Mullis and Jenkins (1990).

Item Bias Information. A major concern in the eval-
uation and construction of educational tests is that they
have as little ethnic and gender bias as possible. There
are many definitions of bias, and IRT is particularly well
suited to providing information relevant to one of them.

An item shows differential item functioning (DIF) if
the conditional probability of getting the item correct—
based on the student’s ability, P(O)—differs systemati-
cally for students who are members of different groups
of interest. In other words, ICCs that differ over groups
are evidence of DIF.

Note that DIF is conditional on ability. The fact that
two groups differ in their p-values is not an indication of
DIF, because p-values are influenced by differences in
the distributions of ability as well as by differences in the
conditional relationship between ability and item perfor-
mance. Moreover, DIF procedures compare items rela-
tive to each other; constant effects that influence all
items cannot be detected with DIF analyses.

Various procedures are available for evaluating DIF
with IRT. Discussions of these procedures are presented
in Hambleton (1989), Cole and Moss (1989), and Hulin,
Drasgow, and Parsons (1983).

Item Parameter Estimation

To obtain item parameter estimates, or to calibrate a
set of items, it is necessary to have the responses of a
group of students to these items. The procedure used to
estimate the parameters is iterative. They typically be-
gin with some starting estimates for abilities and then—
holding these values as fixed or known— estimate item

parameters. Then, treating the item parameters as
known, the abilities are reestimated. This process con-
tinues until satisfactory convergence in the estimates is
obtained. Because of the complexity of the estimation
process, it is almost always used with a computer pro-
gram run on a mainframe or microcomputer.

Simulation studies have shown that programs are
available that can accurately estimate the parameters
and abilities for the one-, two-, and three-parameter
models. The more item parameters there are in the
model, the greater is the number of students needed to
obtain accurate parameter estimates. There are no hard
and fast rules about the minimum number of students or
items needed for useful estimates to be produced, but
only rarely would a test and group of students produce
useful estimates with fewer than, say, 15 to 20 items and
fewer than 200, 400, or 600 students for the one-, two-,
or three-parameter models, respectively. The level of ac-
curacy needed for the particular application needs to be
considered. For example, much more accuracy is
needed for equating tests used to award a medical li-
cense than is needed for an item tryout whose purpose
is to get a rough idea of the grade level at which items
measure best. Formulas for the standard errors of max-
imum likelihood item parameter estimates are available
(Lord, 1980). Detailed comparisons of the characteristics
and performance of the estimation programs are avail-
able in Hambleton (1989), Hsu and Yu (1989), Lord
(1986), and Mislevy and Stocking (1989).

Model Fit

The usefulness of an IRT model is its ability to de-
scribe and predict students’ performance on items. If an
IRT model could be shown to be completely accurate,
all of its predictions would be true. However, verifying
every prediction is not possible without collecting the
empirical data that were the object of the prediction,
thereby eliminating the efficiency that was the motiva-
tion for using the model. Thus those using IRT models
typically describe the level of accuracy of the predictions
in which they have special interest and generalize these
findings to similar situations. Many procedures are avail-
able to examine model fit, and three basic types are de-
scribed here: (a) indirect analyses; (b) residuals; and (c)
measurement characteristics.

Indirect Analyses. Indirect studies typically are
done before users make the intellectual and financial in-
vestment in the knowledge and computer programs re-
quired to actually analyze their data with one or more of
the models. These analyses investigate whether existing
tests or data might be clearly inconsistent with the
models. An analysis of test speededness may be con-
ducted; if substantial numbers of students get items
wrong because they do not finish the test, it is unlikely
that an IRT model will be suitable. A rational or empir-
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ical analysis mav be made of the chance that students
will try or succeed in guessing the correct answer: the
greater this chance, the less likelv that the two-parame-
ter or Rasch models will be suitable.

Residuals.  After parameters and abilities have been
estimated, fit analyses can be conducted that compare
observed and predicted ICCs. The observed perfor-
mance for student k on item i takes on the value 0 for an
incorrect answer and 1 for a correct answer. The pre-
dicted performance for that student on that item is
P{ O,). The difference between the observed and pre-
dicted values is the residual, or error of prediction.

A variety of procedures are available for examining
item residuals (Hambleton, 1989; Ludlow, 1986; Wright
& Stone, 1979). Residuals can also be examined for a
-single student to determine whether the student’s per-
formance indicates guessing, inconsistency, or some
other characteristic of interest (Hulin, Drasgow, & Par-
sons, 1983); this examination is called appropriateness
measurement or person fit.

Measurement Characteristics. Analyses of residuals
often do not reveal the practical consequences of misfit.
and further studies are made with that focus. For ex-
ample, predictions of number-correct score means, stan-
dard deviations, distributions, and SEM functions can
be made and checked.

Of particular interest have been examinations of the
degree to which item parameter estimates are person-
free and ability estimates are item free. The latter is an
examination of test equating and is the IRT measure-
ment characteristic that has been most thoroughly re-
searched. In fact. research into IRT equating has revived
interest in examining the adequacy of other equating
methods, as well. Results of such studies have varied
greatly, though some generalizable conclusions can be
drawn.

L. When an item appears in different test forms, the
more similar its surrounding context, the more stable
the item’s statistical qualities will be. If fatigue is a factor,
items can be more difficult if they appear at the end of a
test.

2. The more similar students’ test-relevant experi-
ences are, the more likely that item parameters will be
stable for them. However, DIF analyses indicate that ex-
perts cannot straightforwardly judge from item content
which items will be most stable over groups.

3. The more equal the difficulty of test forms being
equated, the better the IRT (as well as the other equat-
ing methods) works. Because the one-parameter model
does not adjust for guessing, its use may present partic-
ular problems in equating multiplechoice tests that vary
substantially in difficulty.

4. The more homogeneous the content of a test, the
more likely an equating based on IRT (or any other sin-
gle-score method) will hold up over different populations
of students. Test forms, including customized tests, must

be matched in terms of content coverage if they are to
produce comparable scores.

5. The numbers of items and students must be large
enough to be suitable for the equating methods being used,
with more items and students being required for proce-
dures that describe more details of the test performance.

One educational equating issue deserves special at-
tention: IRT has made customizing tests easier, that is,
systematically selecting items for particular applications.
In some cases local educational agencies have developed
their own tests and then used IRT to equate their tests
to nationally normed tests. In other cases, test publish-
ers have provided customized versions of their normed
tests to such agencies, linking the customized test to na-
tional norms. In evaluating the appropnateness of these
procedures, the principles just described apply. In par-
ticular, the more the customized test narrows the con-
tent or changes its emphasis from that in the normed
test, the less accurate its normative scores will be. There
are legitimate reasons for customizing tests, such as to
integrate norm-referenced measurement with other
parts of a test program in order to improve efficiency,
and valid normative information can be obtained from
customized tests. However, customization needs to be
done with care (Yen, Green, & Burket, 1987).

Future Developments

Interest in IRT models likelv will continue and ex-
pand. For example, increasing attention is being focused
on the fact that test information can be invalidated if test
security is compromised or if students focus on learning
specific test items rather than the skills the test is at-
tempting to measure. These concerns can be addressed
efficiently through the use of IRT to create item pools
from which multiple test forms are created. Matrix sam-
pling using IRT also addresses those issues, as well as
the issue of decreasing the amount of testing required of
each student while maintaining broad content coverage
(Bock, Mislevy, & Woodson, 1982). Content referencing
of scores is becoming more widely used (Mullis & Jen-
kins, 1990). Increased use of microcomputers in educa-
tion will increase the availability of IRT technology,
including computerized adaptive testing (Bunderson,
Inouve, & Olsen. 1989; Wainer, 1990; Weiss, 1983).

Item response theory models that are more elaborate
than those presented here are likely to receive increas-
ing attention. Three examples are multidimensional
models involving more than one- ability (Reckase, Ack-
erman, & Carlson, 1988); models that can be applied to
ratings, such as those that result from the scoring of writ-
ing samples and other performance assessments (Thissen
& Steinberg, 1986; Wright & Masters, 1982); and models
especially designed to relate item performance to the
cognitive demands of the items (Embretson, 1985; Shee-
han & Mislevy, 1990).
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Sources of Further Information

The Journal of Educational Measurement (Summer
1977) contains six articles introducing the basic theory
and potential application of IRT (under the then-current
name latent trait theory). McKinley (1989) provides an
overview of IRT with a minimum of equations. The mea-
surement textbooks by Allen and Yen (1979) and Crocker
and Algina (1986) have some introductory IRT informa-
tion. Baker’s (1985) IRT introduction includes a micro-
computer program that permits interactions with the
models. Wright and Stone (1979) describe the philoso-
phy and application of the Rasch model.

Familiarity with measurement and statistical concepts
is assumed in the thorough IRT survey in Hambleton
(1989) and in the collection of 13 applications in Ham-
bleton (1983). Applied Psychological Measurement (De-
cember 1986) presents nine articles on item banking.
Hambleton and Swaminathan (1985) and Hulin, Dras-
gow, and Parsons (1983) provide IRT textbooks, leading
from an introductory to a more advanced level. At the
advanced level Birnbaum (1968) describes fundamental
concepts, and Lord (1980) presents an elegant and au-
thoritative treatment of IRT.

Journals that publish most of the original articles deal-
ing with IRT are Applied Psychological Measurement,
Journal of Educational Measurement, Journal of Edu-
cational Statistics, and Psychometrika.

Wendy M. Yen

See also Achievement Testing; Item Analysis; Norms
and Scales; Reliability of Measurement; Test Construc-
tion; Testing Technology.
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